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Abstract
In this paper, we consider a class of semi-Hamiltonian systems characterized by
the existence of a special conservation law. The density and the current of this
conservation law satisfy a second-order system of PDEs which has a natural
interpretation in the theory of flat bidifferential ideals. The class of systems
we consider contains important well-known examples of semi-Hamiltonian
systems. Other examples, such as genus 1 Whitham modulation equations for
KdV, are related to this class by a reciprocal transformation.

PACS numbers: 02.30.Ik, 02.30.Jr

1. Introduction

Bidifferential ideals play an important role in the theory of finite-dimensional integrable
systems, in particular in the bi-Hamiltonian theory of separation of variables [6, 20].

Some recent results [1, 19] suggest that they have also some applications in the theory
of infinite-dimensional integrable systems, in particular in the case of integrable quasilinear
PDEs.

In this paper, following [19], we want to deepen the study of these applications in the case
of diagonal integrable systems of quasilinear PDEs, the so-called semi-Hamiltonian systems.

Definition 1 [26]. A diagonal system of PDEs of hydrodynamic type

ui
t = vi(u)ui

x i = 1, . . . , n (1)

is called semi-Hamiltonian if the coefficients vi(u) satisfy the system of equations

∂j

(
∂kv

i

vi − vk

)
= ∂k

(
∂jv

i

vi − vj

)
∀i �= j �= k �= i, (2)

where ∂i = ∂
∂ui .
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Equations (2) are the integrability conditions for the system

∂jw
i

wi − wj
= ∂jv

i

vi − vj
, (3)

which provides the characteristic velocities wi of the symmetries of (1), and for the system

(vi − vj )∂i∂jH = ∂iv
j ∂jH − ∂jv

i∂iH, (4)

which provides the densities H of conservation laws of (1).
The knowledge of the symmetries of the system (1) allows one to find its general solution.

Indeed, according to a general scheme of integration of semi-Hamiltonian systems proposed
by Tsarev, the generalized hodograph method [26], any solution of a semi-Hamiltonian system
is implicitly defined by a system of algebraic equations

wi(u) = x + vi(u)t i = 1, . . . , n (5)

where the functions wi(u) are the solutions of the system (3).
A classical result in the theory of first-order quasilinear PDEs [18] states that, if system

(1) possesses a conservation law

∂tH + ∂xK = 0

then the characteristic velocities vi can be written in the form

vi = − ∂iK

∂iH
i = 1, . . . , n. (6)

This result has some interesting consequences in the case of a semi-Hamiltonian systems. Due
to integrability conditions (2) the space of solutions wi of the system (3) is parametrized by n
arbitrary functions of one variable.

Since the system (4) is invariant with respect to the substitution vi → wi , for any solution
(w1, . . . , wn) of the system (3) there exists a function K ′ such that

wi = −∂iK
′

∂iH
i = 1, . . . , n. (7)

In other words the characteristic velocities of the symmetries can be obtained applying the
linear operator

vi
H (·) := − 1

∂iH
∂i(·) i = 1, . . . , n, (8)

to a suitable current K ′.
Note that, in terms of the density H and of the currents K and K ′, the system of algebraic

equations (5) reads

d(K ′ + xH − tK) = 0.

Substituting (7) in (3) and taking into account (4) we obtain the equations for the currents:

∂i∂jK
′ = ∂jH

∂iH

∂iv
j

vi − vj
∂iK

′ − ∂iH

∂jH

∂jv
i

vi − vj
∂jK

′. (9)

In general, the problem of finding the solutions of the system (9) could be very difficult.
The aim of the present paper is to study a special class of semi-Hamiltonian systems
characterized by the existence of a density of conservation law H such that equations (9)
for the associated currents reduce to the form

(f i − f j )∂i∂jK
′ = ∂ig

i∂jK
′ − ∂jg

j ∂iK
′, (10)

where f i = f i(ui) and gi = gi(ui).
Surprisingly, also the density H is a solution of the system (10). Therefore the solutions

of (10) play a double role.
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• Fixed H, they are in one-to-one correspondence with the symmetries of a semi-
Hamiltonian system (see formula (7)). In other words they define a semi-Hamiltonian
hierarchy.

• They label these hierarchies: different choices of H correspond to different hierarchies.

The theory of flat bidifferential ideals arises naturally in this framework. First of all
because any solution of the system (10) defines a flat bidifferential ideal. Second because it
provides a recursive procedure to compute the solutions of (10).

The paper is organized as follows: in section 2 we recall some useful results about the
theory of bidifferential ideals. In section 3, we apply these results to the theory of semi-
Hamiltonian systems. Section 4 is devoted to a discussion of the Hamiltonian formalism. In
particular we find a class of metrics satisfying a system of Egoroff–Darboux type. Remarkably,
in general, these metrics are not related to any Frobenius manifold, since their rotation
coefficients are not symmetric. Finally, in section 5, we put reciprocal transformations into
the game.

2. Bidifferential ideals

A tensor field L : T M → T M , of type (1, 1) on a manifold M, of dimension n, is torsionless
if the following identity

[LX,LY ] − L[LX, Y ] − L[X,LY ] + L2[X, Y ] = 0

is verified for any pair of vector fields X and Y on M. According to the theory of graded
derivations of Frölicher–Nijenhuis [11], a torsionless tensor field L of type (1, 1) defines a
differential operator dL, of degree 1 and type d, on the Grassmann algebra of differential forms
on M, verifying the fundamental conditions:

d · dL + dL · d = 0 d2
L = 0.

On functions and 1-forms this derivation is defined by the following equations

dLf (X) = df (LX)

dLα(X, Y ) = LieLX(α(Y )) − LieLY (α(X)) − α([X, Y ]L),

where

[X, Y ]L = [LX, Y ] + [X,LY ] − L[X, Y ].

For instance, if L = diag(f 1(u1), . . . , f n(un)), the action of dL on functions is given by the
following formula:

dLg :=
n∑

i=1

f i ∂g

∂ui
dui.

We can now define the concept of bidifferential ideal of forms.

Definition 2. A bidifferential ideal I is an ideal of differential forms on M which is closed
with respect to the action of both d and dL:

d(I) ⊂ I dL(I) ⊂ I.

For instance, if the ideal I is generated by a single 1-form α, the condition of closure with
respect to the action of d and dL reads

dα = λ ∧ α, dLα = µ ∧ α,

where λ and µ are suitable 1-forms.
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In this paper, we need a special subclass of bidifferential ideals, called flat bidifferential
ideals.

Definition 3. A flat bidifferential ideal I, of rank 1, on a manifold M endowed with a torsionless
tensor field L : T M → T M , is the ideal of forms generated by the differential dh of a function
h : M → R obeying the condition

ddLh = dh ∧ da (11)

with respect to a function a which satisfies the cohomological condition

ddLa = 0. (12)

Remark 1. In the language of Dimakis and Müller–Hoissen, the pair (d, dL + da∧) defines a
‘gauged bidifferential calculus’. Some applications of this calculus to the theory of integrable
systems are discussed in [1].

From now on, if not stated otherwise, we assume that the eigenvalues of L are pairwise
distinct. In this case, the general solution of equation (12) is given by the sum of n arbitrary
functions of one variable:

a =
n∑

i=1

gi(ui)

and the cohomological equation (11) reads

(f i − f j )∂i∂jh = ∂jh∂ig
i − ∂ih∂jg

j (13)

where f i(ui) and gi = gi(ui) are arbitrary functions of one variable.

3. Flat bidifferential ideals and semi-Hamiltonian systems

In this section, we show that the linear operator (8) establishes a one-to-one correspondence
between the space of solutions of the cohomological equation (11) (which is parametrized
by n arbitrary functions of one variable) and the space of symmetries of a semi-Hamiltonian
system. Indeed, it is easy to prove the following proposition.

Proposition 1. Let H(u) be a solution of the cohomological equation (11), then:

(1) the systems

ui
t = vi

H (K1)u
i
x, i = 1, . . . , n, (14)

ui
τ = vi

H (K2)u
i
x, i = 1, . . . , n (15)

commute for any pair (K1,K2) of solutions of (11);
(2) the system of quasilinear PDEs

ui
t = [

vi
H (K)

]
ui

x =
[
− ∂iK

∂iH

]
ui

x, i = 1, . . . , n (16)

is semi-Hamiltonian for any solution K of equation (11).

Proof.

(1) The commutativity condition for the systems (14) and (15) reads

∂jv
i
H (K1)

vi
H (K1) − v

j

H (K1)
= ∂jv

i
H (K2)

vi
H (K2) − v

j

H (K2)
.
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By straightforward computation we get

∂jv
i
H (K)

vi
H (K) − v

j

H (K)
= ∂jH

∂iH

∂i∂jH∂iK − ∂iH∂i∂jK

∂jK∂iH − ∂iK∂jH
= ∂ia

f j − f i

∂jH

∂iH
, (17)

which does not depend on K.
(2) By definition of semi-Hamiltonian system we have to check that the characteristic

velocities vi
H (K) satisfy the system (2). For i �= k �= j �= i, we obtain the identity:

∂k

(
∂jv

i
H (K)

vi
H (K) − v

j

H (K)

)
= ∂k

(
∂ia

f j − f i

∂jH

∂iH

)

− ∂ia

(∂iH)2

[
∂ja∂iH∂kH

(f i − f j )(f j − f k)
+

∂ka∂iH∂jH

(f k − f i)(f j − f k)
+

∂ia∂jH∂kH

(f i − f j )(f k − f i)

]
,

which is clearly symmetric w.r.t. the indices j and k. �

We have constructed a family of semi-Hamiltonian systems depending on functional
parameters: the eigenvalues f i(ui) of L, the functions a and H. If ∂ifi �= 0, (i = 1, . . . , n),
without loss of generality, we can assume f i(ui) = ui ; the two cases being simply related by
the change of coordinates ui → f i(ui).

Clearly, in order to make effective the construction one has to solve the cohomological
equation (11). Even if its general solution, depending on n arbitrary functions of one variable,
is known explicitly only in some special cases (see section 6 of [22] and references therein),
the double differential complex defined by the pair (d, dL) allows one to construct iteratively
a countable set of solutions.

Lemma 1. Let K0 be a solution of (11). Then, the functions Kl defined recursively by

dKl+1 = dLKl − Kl da, (18)

satisfy equation (11).

The proof is based on standard arguments in the theory of bidifferential ideals [20, 1]. We
report it for the convenience of the reader.

Let us start with the first step of the recursive procedure

dK1 = dLK0 − K0 da. (19)

First of all, let us verify that the 1-form appearing in the right-hand side of (19) is closed.
Indeed, since K0 is a solution of (11), applying to the right-hand side of (19) the differential d
we obtain

d(dLK0 − K0 da) = dK0 ∧ da − dK0 ∧ da = 0.

So the function K1 is (locally) well defined. Moreover

ddLK1 = dLK0 ∧ da = dK1 ∧ da.

We prove now the theorem by induction. Suppose that

dKl = dLKl−1 − Kl−1 da

ddLKl = dKl ∧ da.

Then the 1-form in the right-hand side of (18) is closed:

d(dLKl − Kl da) = dKl ∧ da − dKl ∧ da = 0

and satisfies equation (11):

ddLKl+1 = dLKl ∧ da = dKl+1 ∧ da.
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Let us illustrate how to apply the previous procedure in the case H = a,K0 = −a. Using
the recursive relations (18) we get

ui
t0

= −∂iK0

∂ia
ui

x = ui
x

ui
t1

= −∂iK1

∂ia
ui

x = [f i − a]ui
x = [f i + K0]ui

x

ui
t2

= −∂iK2

∂ia
ui

x = [(f i)2 + K0f
i + K1]ui

x

...

ui
tn

= −∂iKn

∂ia
ui

x = [(f i)n + K0(f
i)n−1 + K1(f

i)n−2 + · · · + Kn−1]ui
x

Following [19] we can write the above hierarchy in the coordinate-free form:

ut0 = ux

ut1 = [L + K0E]iux

ut2 = [L2 + K0L + K1E]ux

...

utn = [Ln + K0L
n−1 + K1L

n−2 + · · · + Kn−1E]ux

where u is the column vector (u1, . . . , un)t , E is the identity matrix and L is a torsionless
tensor field of type (1, 1). The above vector fields commute also in the non-diagonalizable
case [19].

Example 1. H = a, L = diag(u1, . . . , un), a = c Tr(L)

K0 = −a = −c
∑

j

uj

K1 = −1

2
c
∑

j

(uj )2 +
1

2
c2


∑

j

uj




2

K2 = − c

3

∑
j

(uj )3 +
c2

2

∑
j

(uj )2
∑

j

uj − c3

6


∑

j

uj




3

and so on.

Example 2. (non-diagonalizable case). Let

L =


u3 u2

2 0

0 u3 u2

2
0 0 u3


 .

The function a = u1(u2)2 satisfies the cohomological equation ddLa = 0. Therefore the first
non-trivial flow of the hierarchy starting from K0 = −a is

u1
t

u2
t

u3
t


 =


u3 − a u2

2 0

0 u3 − a u2

2
0 0 u3 − a





u1

x

u2
x

u3
x

.
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The other non-trivial flows can be obtained solving the recursive relations (18) for the functions
K1,K2, . . .:

K1 = −u1(u2)2u3 − 1
8 (u2)4 + 1

2 (u1)2(u2)4

K2 = −u1(u2)2(u3)2 − 1
4 (u2)4u3 + (u1)2(u2)2u3

− 1
6 (u1)

3(u2)
6 + 1

8u1(u2)
6

and so on.

Remark 2. Semi-Hamiltonian systems of the form

ui
t = (f i − a)ui

x, (20)

have been obtained in [22] as finite component reduction of an infinite hydrodynamic chain.
The connection between bidifferential ideals and such systems has been investigated in [19].
The starting point of that paper was the observation that the conditions (4) and (2) for systems
(20) coincide with the cohomological equations

ddLH = da ∧ dH

ddLa = 0.

4. Some remarks about the Hamiltonian structure

The Hamiltonian formalism for systems of hydrodynamic type was introduced by Dubrovin
and Novikov in [3, 4]. They considered first-order differential operators of the form

P ij = gij (u)∂x − gis�
j

sk(u)uk
x (21)

and the associated Poisson brackets

{F,G} :=
∫

δF

δui
P ij δG

δuj
dx (22)

where F = ∫
g(u) dx and G = ∫

g(u) dx are local functionals.

Theorem 1 [3]. If det gij �= 0, then formula (22) defines a Poisson bracket if and only if the
tensor gij defines a flat pseudo-Riemannian metric and the coefficients �

j

sk are the Christoffel
symbols of the associated Levi-Civita connection.

Nonlocal extensions of the bracket (22), related to metrics of constant curvature, were
considered by Ferapontov and Mokhov in [8]. Further generalizations were considered by
Ferapontov in [7].

Let us focus our attention on semihamiltonan systems (1)

ui
t = vi(u)ui

x, i = 1, . . . n.

In [7] Ferapontov conjectured that any semi-Hamiltonian system is always Hamiltonian with
respect to suitable, possibly nonlocal, Hamiltonian operators. Moreover he proposed the
following construction to define such Hamiltonian operators:

1. Find the general solution of the system

∂j ln
√

gii = ∂jv
i

vj − vi
. (23)

To this purpose is sufficient to find one solution gii of (23). Indeed, the general solution is
gii

ϕi (ui )
, where ϕi are arbitrary functions of one argument. The flat solutions of (23) provide

the local Hamiltonian structures of the system (1).
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2. Write the non-vanishing components of the curvature tensor in terms of solutions wi
α of

the linear system (3):

R
ij

ij =
∑

α

εαwi
αwj

α εα = ±1. (24)

(Ferapontov conjectured that it is always possible to find expansion (24).)

Then the system (1) is automatically Hamiltonian with respect to the Hamiltonian operator

P ij = giiδij ∂x − gii�
j

ik(u)uk
x +

∑
α

εαwi
αui

x∂
−1
x wj

αuj
x. (25)

Example 3. [7, 27, 21] Let us consider the system of chromatography equations in Riemann
invariants

ui
t =

[
ui

∏
uk

]−1
ui

x i = 1, . . . n. (26)

The general solution of (23), in this case, is

gii =
∏

k �=i (u
k − ui)2

ϕi(ui)
i = 1, . . . n,

where ϕi(ui) are n arbitrary functions of one variables. For n � 3 all these metrics are not flat
[21]. They generate nonlocal Hamiltonian operators of the form [7]

P ij = giiδij ∂x − gis�
j

sk(u)uk
x −

n∑
α=1

wi
αui

x∂
−1
x wj

αuj
x, (27)

where

wi
1 = ∂i

( √
ϕ1∏

l �=1(u
l − u1)2

)
, . . . wi

n = ∂i

( √
ϕn∏

l �=n(u
l − un)2

)
. (28)

Note that system (26) can be written in the form

ui
t = −∂iK

∂ia
ui

x, i = 1, . . . n, (29)

where

K = − 1∏n
k=1 uk

is a solution of the cohomological equation (11) with L = diag(u1, . . . un), a = −Tr(L).

Example 4 [9]. Let us consider the semi-Hamiltonian system

ui
t =

[
n∑

i=1

ui + 2ui

]
ui

x, i = 1, . . . n. (30)

The general solution of (23) is

gii =
∏

k �=i (u
k − ui)

ϕi(ui)
, i = 1, . . . n,

where ϕi(ui) are n arbitrary functions of one variables. The choice ϕi(ui) = (ui)α

(α = 0, . . . , n) provides n + 1 flat metrics. For generic ϕi(ui) the metric gii is not flat



Flat bidifferential ideals and semi-Hamiltonian PDEs 13709

and generates nonlocal Hamiltonian operator with infinite nonlocal tail. Note that system (30)
can be written in the form (29) where

K = 1

4

∑
j

(uj )2 +
1

8


∑

j

uj




2

,

is a solution of the cohomological equation (11) with L = diag(u1, . . . un), a = − 1
2 Tr(L).

Let us consider semi-Hamiltonian systems of the form (16). Taking into account
equation (11), the system (23) reduces to

1

2
∂i ln gjj = −∂j ln ∂iH − ∂ja

f i − f j
. (31)

From now on, in this section, we assume a = c Tr(L) = c
∑n

j=1 f j . In this case, the general
solution of (31) is

gii = (∂iH)2

ϕi(ui)
[∏

l �=i (f
i − f l)

]2c
, i = 1, . . . n, (32)

where ϕi(ui) are n arbitrary functions of one variable.
The rotation coefficients of the metrics (32) depend on the constant c, the eigenvalues

(f 1, . . . , f n) and on the choice of the arbitrary functions (ϕ1, . . . , ϕn) but not on the function
H. More precisely we have the following proposition.

Proposition 2. Let H be a solution of the system:

(f i − f j )∂i∂jH = c∂if
i∂jH − c∂jf

j ∂iH (33)

Then, if a = c Tr(L), the rotation coefficients βij (u) = ∂i

√
gjj (u)√

gii (u)
of the metrics (32), does not

depend on H. More precisely they are given by the following expression:

βij =
[∏

l �=i (f
i − f l)∏

l �=j (f
j − f l)

]c
c∂jf

j

f j − f i

√
ϕi

ϕj

. (34)

Proof.

βij (u) =
√

ϕi

ϕj

[ ∏
l �=i (f

i − f l)∏
l �=j (f

j − f l)

]c [
∂i∂jH

∂iH
+ c

∂jH

∂iH

∂jfj

f j − f i

]
.

Taking into account (33), we obtain formula (34). �

The problem of finding expansion (24) for the metrics (32) is, in general, very difficult.
For H = a this problem has been solved only for c = ±1, 1/2 (see section 9 of [22]).
The case H �= a, which to our best knowledge, has not previously considered in the

literature, can be reduced to the case H = a = c Tr(L). Indeed, we have the following
proposition.

Proposition 3. Let H be a solution of the system

(f i − f j )∂i∂jH = c∂if
i∂jH − c∂jf

j ∂iH

and

ui
tα

= w̃i
αui

x = −∂iKα

∂iH
ui

x, (35)
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the corresponding semi-Hamiltonian hierarchy constructed with the solutions Kα of the system
(33). Suppose that the hierarchy

ui
tα

= wi
αui

x = − ∂iKα

c∂if i
ui

x (36)

is Hamiltonian w.r.t. the Hamiltonian operator

P ij = giiδij ∂x − gii�
j

ik(u)uk
x −

∑
α

wi
αui

x∂
−1
x wj

αuj
x (37)

and the Hamiltonian densities hα . Then the hierarchy (35) is Hamiltonian w.r.t. the
Hamiltonian operator

P̃ ij = g̃iiδij ∂x − g̃ii �̃
j

ik(u)uk
x −

∑
α

w̃i
αui

x∂
−1
x w̃j

αuj
x, (38)

where g̃ii = [
c

∂if
i

∂iH

]2
gii , the coefficients �̃

j

ik are the Christoffel symbols of the associated

Levi-Civita connection and w̃i
α = c∂if

i

∂iH
wi

α . Moreover the Hamiltonian densities h̃α of the
systems (35) can be obtained from the Hamiltonian densities hα solving the compatible system

∂i h̃α = ∂iH

∂ia
∂ihα. (39)

Proof. The non-vanishing components of the curvature tensor

R
ij

ij = gii
(
∂j�

j

ii − ∂i�
j

ij − �
j

pi�
p

ij + �
j

pj�
p

ii

)
(40)

can be written in the form

R
ij

ij = 1

∂iH∂jH
S

ij

ij (41)

where the quantities S
ij

ij do not depend on H. Indeed in terms of the rotation coefficients (that
do not depend on H), formula (40) reads

R
ij

ij = − 1√
gii

1√
gjj


∂iβij + ∂jβji +

∑
k �=i,j

βkiβkj


 .

Using this fact it is easy to obtain expansion (24) for the non-vanishing components of the
curvature tensor of the metric g′

ii = c2
(

∂iH

∂if i

)2
gii :

R
′ij
ij = c2 ∂if

i∂jf
j

∂iH∂jH
R

ij

ij .

Observe that the coefficients w̃i
α = c

∂if
i

∂iH
wi

α = − ∂iKα

∂iH
are characteristic velocities of

symmetries of (35). Therefore the bivector (38) satisfies all Ferapontov conditions. Indeed:

– the diagonal metric g̃ii is a solution of the system (23);
– the coefficients �̃i

jk are, by definition, the Christoffel symbols of the associated Levi-Civita
connection;

– the nonlocal tail of (38) is constructed with the characteristic velocities w̃i
α appearing in

the expansion of the non-vanishing components of the curvature tensor.



Flat bidifferential ideals and semi-Hamiltonian PDEs 13711

We have to show now that the function h̃α are Hamiltonian densities. First of all we
observe that they are well defined. Indeed the compatibility of the system (39) reads

∂i∂jhα − c
∂ihα∂jf

j

f i − f j
+ c

∂jhα∂if
i

f i − f j
= 0, (42)

which is nothing but the system (4) for the densities of conservation law of the semi-
Hamiltonian hierarchy (36). Moreover it is easy to check that if the functions hα are solutions
of the system (42), then the functions h̃α are solutions of the system (4) for the densities of
conservation laws of the semi-Hamiltonian hierarchy (35). �

We conclude this section mentioning an important property of the metrics (32) in the case
L = diag(u1, . . . , un) and ϕi = 1(i = 1, . . . , n).

Proposition 4. If f i(ui) = ui and ϕi = 1(i = 1, . . . , n), the rotation coefficients (34) satisfy
the system

∂kβij = βikβkj i �= j �= k (43)∑
k

∂kβij = 0 i �= j (44)

∑
k

uk∂kβij = −βij i �= j. (45)

Proof. Equations (43) are automatically satisfied because they are equivalent to the
conditions (2).

Moreover, by straightforward computation we obtain∑
k

∂kβij = ∂jβij + ∂iβij +
∑
k �=i,j

βikβkj

=
[ ∏

l �=i (u
i − ul)∏

l �=j (u
j − ul)

]c−1
c2

uj − ui

×
{

−
∏

l �=i,j (u
i − ul)∏

l �=j (u
j − ul)

−
∏

l �=i (u
i − ul)

∑
k �=j

∏
l �=j,k(u

j − ul)∏
l �=j (u

j − ul)2

+

∑
k �=i

∏
l �=i,k(u

i − ul)∏
l �=j (u

j − ul)
+

∏
l �=i (u

i − ul)
∏

l �=i,j (u
j − ul)∏

l �=j (u
j − ul)2

}

+

[ ∏
l �=i (u

i − ul)∏
l �=j (u

j − ul)

]c
c2

uj − ui

∑
i,j

[
1

uk − ui
+

1

uj − uk

]

=
[ ∏

l �=i (u
i − ul)∏

l �=j (u
j − ul)

]c
c2

uj − ui

×

−

∑
k �=i,j

1

uj − uk
+

∑
k �=i,j

1

ui − uk
+

∑
k �=i,j

(
1

uk − ui
+

1

uj − uk

)


= 0
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and∑
k

uk∂kβij =
∑
k �=i,j

ukβikβkj + uj∂jβij + ui∂iβij

=
[ ∏

l �=i (u
i − ul)∏

l �=j (u
j − ul)

]c

 c2uk

uj − ui

∑
k �=i,j

[
1

uk − ui
+

1

uj − uk

]
− c

uj − ui

+
c2

uj − ui


 uj

uj − ui
−

∑
k �=j

uj

uj − uk
+
∑
k �=i

ui

ui − uk
+

ui

uj − ui






= −βij +

[ ∏
l �=i (u

i − ul)∏
l �=j (u

j − ul)

]c
c2

uj − ui

×



∑
k �=i,j

[
uk

uk − ui
+

uk

uj − uk

]
−

∑
k �=i,j

uj

uj − uk
+

∑
k �=i,j

ui

ui − uk




= −βij +

[ ∏
l �=i (u

i − ul)∏
l �=j (u

j − ul)

]c
c2

uj − ui




∑
k �=i,j

[
uk − uj

uj − uk
+

uk − ui

uk − ui

]


= −βij . �

Remark 3. In general, the rotation coefficients (34) are not symmetric. In the case of
symmetric rotation coefficients, equations (43)–(45) arise naturally in the framework of
Frobenius manifolds [2].

As is well known, the theory of Frobenius manifolds is related to the theory of
isomonodromic deformations. Indeed, equations (43)–(45) are equivalent to the system:

∂kV (u) = [V (u), [Ek, �]], k = 1, . . . , n, (46)

where

(Ek)ij = δikδkj

U := diag(u1, . . . , un)

�(u) := (βij )

V (u) := (ui − uj )βij ,

that governs the monodromy preserving deformations of the operator

d

dz
−

(
U +

V

z

)
.

The proof of this fact (see [2]) does not rely on the hypothesis of symmetry of the rotation
coefficients.

5. A remark on Whitham equations

A well-known example of semi-Hamiltonian system is the system of quasilinear PDEs that
describes the slow modulations of g-gap solutions of the KdV hierarchy: the Whitham
equations [28]. In this case, the characteristic velocities can be written in terms of hyperelliptic
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integrals of genus g. In g = 1 case these equations read

u1
t =

[
−u1 + u2 + u3

3
+

2(u2 − u1)K(s)

3(K(s) − E(s)

]
u1

x

u2
t =

[
−u1 + u2 + u3

3
+

2(u2 − u1)K(s)

3(E(s) − (1 − s2)K(s)

]
u2

x

u3
t =

[
−u1 + u2 + u3

3
− 2(u3 − u1)(1 − s2)E(s)

3E(s)

]
u3

x

where s = u2−u1

u3−u1 ,K(s) and E(s) are complete elliptic integrals of the first and second kind.
For Whitham equations, the hodograph method is effective [5, 12–16, 23–25]. Indeed it

is possible to construct explicitly the symmetries appearing in equations (5).

Theorem 2 [13, 14, 16, 23, 24]. There exist functions q1(u), q2(u), q3(u) such that the
characteristic velocities wi of the symmetries of the Whitham equations have the form

wi := [1 + qi∂i] K, i = 1, . . . , 3, (47)

where the function K is a solution of the following system of Euler–Poisson–Darboux type:

2(ui − uj )∂i∂jK = ∂iK − ∂jK i �= j, i, j = 1, 2, 3. (48)

which can be explicitly solved.

The functions qi(u) can be written in terms of the complete elliptic integral K(s) and E(s).
Moreover from the conservation of waves it follows that [13, 14, 17, 25]:

qi(u) = − H

∂iH
i = 1, 2, 3,

where

H =
∮

dξ√
(u1 − ξ)(u2 − ξ)(u3 − ξ)

(49)

is the wavelength (the integration is taken over the cycle around the gap u2 � ξ � u3).
Therefore, the Whitham equations can be written in the form:

ui
t = vi

H (K) =
[
K − H

∂iH
∂iK

]
ui

x, i = 1, 2, 3.

Note that the wavelength H satisfies the Euler–Darboux–Poisson system (48), which is
a particular case of the cohomological equation (11) corresponding to the choice L =
diag(u1, u2, u3), a = − 1

2 Tr(L). This remark suggests to consider systems of the form

ui
t = vi

H (K)ui
x =

[
K − H

∂iH
∂iK

]
ui

x, i = 1, . . . , n, (50)

where the functions H and K are solutions of the cohomological equations (13). It is easy to
prove that such systems are semi-Hamiltonian and that, fixed H, the systems

ui
t = vi

H (K1)u
i
x, i = 1, . . . , n

ui
τ = vi

H (K2)u
i
x, i = 1, . . . , n,

commute for any pair (K1,K2) of solutions of (13).
This fact can be proved by straightforward calculation or simply observing that systems of

the form (47) can be obtained from the systems studied in this paper by means of a reciprocal
transformation.
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Proposition 5. Systems

ui
t̃ =

[
K − H

∂iH
∂iK

]
ui

x̃ , i = 1, . . . , n,

are related to the systems

ui
t =

[
− ∂iK

∂iH

]
ui

x

by the reciprocal transformation

dx̃ = H dx − K dt

dt̃ = dt.

The proof is a trivial computation.

6. Conclusions

In this paper, we studied some applications of the theory of flat bidifferential ideals to semi-
Hamiltonian systems of quasilinear PDEs.

The starting point of the present paper was the observation that for any semi-Hamiltonian
system there exists a linear differential operator that, acting on a suitable domain, provides all
the symmetries of the system.

We showed that for a special class of semi-Hamiltonian systems this operator and its
domain are completely characterized by the solutions of a cohomological equation.

Moreover the theory of flat bidifferential ideals naturally provides a recursive procedure
to compute the solutions of this equation.
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